Tilings and model theory

نویسندگان

  • Alexis Ballier
  • Emmanuel Jeandel
چکیده

In this paper we emphasize the links between model theory and tilings. More precisely, after giving the definitions of what tilings are, we give a natural way to have an interpretation of the tiling rules in first order logics. This opens the way to map some model theoretical properties onto some properties of sets of tilings, or tilings themselves.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brane Tilings and Their Applications

We review recent developments in the theory of brane tilings and four-dimensional N = 1 supersymmetric quiver gauge theories. This review consists of two parts. In part I, we describe foundations of brane tilings, emphasizing the physical interpretation of brane tilings as fivebrane systems. In part II, we discuss application of brane tilings to AdS/CFT correspondence and homological mirror sym...

متن کامل

Dense Dirac combs in Euclidean space with pure point diffraction

Regular model sets, describing the point positions of ideal quasicrystallographic tilings, are mathematical models of quasicrystals. An important result in mathematical diffraction theory of regular model sets, which are defined on locally compact Abelian groups, is the pure pointedness of the diffraction spectrum. We derive an extension of this result, valid for dense point sets in Euclidean s...

متن کامل

0 Non - Intersecting Paths , Random Tilings and Random Matrices

We investigate certain measures induced by families of non-intersecting paths in domino tilings of the Aztec diamond, rhombus tilings of an abc-hexagon, a dimer model on a cylindrical brick lattice and a growth model. The measures obtained, e.g. the Krawtchouk and Hahn ensembles, have the same structure as the eigenvalue measures in random matrix theory like GUE, which can in fact can be obtain...

متن کامل

Faultfree Tromino Tilings of Rectangles

In this paper we consider faultfree tromino tilings of rectangles and characterize rectangles that admit such tilings. We introduce the notion of crossing numbers for tilings and derive bounds on the crossing numbers of faultfree tilings. We develop an iterative scheme for generating faultfree tromino tilings for rectangles and derive the closed form expression for the exact number of faultfree...

متن کامل

Linear Repetitivity, I. Uniform Subadditive Ergodic Theorems and Applications

This paper is concerned with the concept of linear repetitivity in the theory of tilings. We prove a general uniform subadditive ergodic theorem for linearly repetitive tilings. This theorem unifies and extends various known (sub)additive ergodic theorems on tilings. The results of this paper can be applied in the study of both random operators and lattice gas models on tilings.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008